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  ABSTRACT  

This paper investigates the effect of using different filters namely: Kalman filter (KF), Particle Filter (PF) and 

a proposed enhanced particle / Kalman (EPKF) filter based robot localizer. An algorithm is built in Matlab 

environment to host these filters. The performances of these filters are evaluated in terms of computational time 

and error from ground truth and the results are reported. The results showed that the proposed localization plan 

which adopts the particle filter as initialization step to Kalman filter achieves higher accuracy localization while, 

the computational cost is not significant.  
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I. INTRODUCTION 

The problem of robot localization consists of answering the question Where am I from a robot's point 

of view. This means the robot has to find out its location relative to the environment. When we talk about 

location, pose, or position we mean the x and y coordinates and heading direction of a robot in a global 

coordinate system. 

The mobile robot localization problem comes in many different flavours .The most simple 

localization problem is position tracking while the initial robot pose is known, and the problem is to 

compensate incremental errors in a robot’s odometry. More challenging is the global localization problem [1], 

where a robot is not told its initial pose but instead has to determine it from scratch. 

Several methods are employed to deal with robot localization problem [2, 3] .The Kalman filter has 

been frequently applied to the problem of robot localization. It works recursively, and so does not require a 

history of the robot’s previous states to be kept. This results in a streamlined algorithm that can run online in a 

real time systems. Unfortunately, the absolute range measurements are non-linear (as in our case) requiring the 

use of an extended Kalman Filter (EKF), which must be linearized the measurements around the current state 

estimate. These results in a weakness common to all linear methods which means that the Kalman filter will 

not converge when the initial state is not sufficiently accurate [4] 

 

Recently Particle Filter (PF) becomes dominant approach used for solving this problem. This is due 

to its ability to handle non-linear non-Gaussian problem, typical characteristic of localization problem [5, 6]. 

Several implementations of PF are reported [7- 9].  

  In this paper, the particle filter is introduced to initialize Kalman filter to overcome the initial state 

problem of original Kalman filter. Different filters  namely  Kalman filter (KF) ,  Particle Filter (PF)  and a 

proposed enhanced particle/Kalman (PKF) implemented in Matlab environment and their performance are 

evaluated in terms of computational complexity and amount of  error from ground truth The obtained results 

are reported and compared.. 

This paper is organized as follows: section2 presents overview of an Enhanced Particle / Kalman 

filter and their implementation algorithms, section 3 studied the effect in Robot Localization by using different 

filters, section 4 shows the discussion of the obtained results, section 5 is devoted to conclusion.  

II. OVERVIEW OF AN ENHANCED PARTICLE / KALMAN  FILTER 

 
The used absolute range measurements are non-linear, requiring the use of an extended Kalman Filter 

(EKF), The Kalman filter there is modified to filter known as extended Kalman filter  
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A. Extended Kalman Filter (EKF) for Localization  

 

1) Process Model [10] 

If the robots pose (position and attitude) at time k is represented by the state vector  Tkkkk yxq ,,  then the 

dynamics of the wheeled robot used in this experiment are well-modeled by the following set of non-linear 

equations:  
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Where: vk is a noise vector. Here, ΔDk point at the center of the robot’s front axle, obtained by averaging the 

distances measured by the left and right wheel encoders. The incremental orientation change Δθk is obtained by 

the onboard gyro. These dead reckoning measurements constitute the control input vector  Tkkk Du  ,  

The system matrix A (k) is represented by the Jacobian:  
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The input gain matrix B(k) is constructed similarly: 
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2) Measurement Model [10]: 
 The range at time k+1 from a beacon located at (xb, yb) to the robot with state vector qk+1 can be expressed as: 

 

      21
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 Time Propagation [11]

 When a new control input vector    kkDku  ,  is received, the robot’s state is updated according to the 

process model equation. Using the standard equations of Kalman filtering, the covariance matrix maintaining our 

uncertainty about the current state is propagated in time: 

         kQkBkBkApkAp
TT

kk  





1  (5) 

 

So, the state maintained during the time propagation step indicates the pose of the robot at the robot 

reference point. 

4) Measurement Update: [12] 

When a measurement is obtained, using the method of the update step is broken up as follows: 

 

1. Using the current state estimate, determine the location of the antenna which received the current measurement 

(i.e., shift the robot reference point’s coordinates to get the coordinates of the current antenna, (xa, ya)). 

2. Project the current measurement onto the xy plane of the robot. 

3. Using (xa, ya) and the known beacon location (xb, yb), compute Hk. 

4. Look up the variance k R and the mean k y associated with the current measurement from its stored PDF. 

. Using the measurement model, compute the expected range rk to the beacon. Let υ (k) = y − r be the innovation. 
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6. Compute k

T

kkkk RHpHS  
 

7. Compute the Kalman gain 
kk

T

kkk SHpK 1  

8. Compute the normalized innovation squared and test the measurement against the chi square  

9. If the measurement passes the gating test, update the state by letting  kvKqq kkk   ˆˆ  and update the 

covariance matrix by letting
T

kkkkk KSKpp  
. 

10. Now, using this updated estimate of the pose at the antenna which reported the current measurement, shift 

back in x and y to get the updated pose estimate at the robot reference point. 

B. Particle Filter Algorithm 

The PFs are formulated on the concepts of the Bayesian theory and the sequential importance-sampling which 

are very effective in dealing with non-Gaussian and non-linear problems [13-14]  

The PF approximates recursively the posterior distribution using a finite set of weighted samples. The idea is 

to represent the required posterior density function by a set of random samples with associated weights and to 

compute estimates based on these samples and weights. PF uses the probabilistic system transition model p (Xt|Xt-

1), (which describes the transition for state vector Xt) to predict the posterior at time t as: 

 dX ) Z|p(X )X |p(X) Z|p(X 1-t1-t:11-t1-tt1-t:1t   (6) 

Where Z1: t-1 = {Z1, Z2,.... Zt-1} are available observations at times 1, 2, …., t-1,    p(Xt|Xt-1) expresses the motion 

model,  p(Xt-1|Z1: t-1) is posterior probability density function at time t-1 and p(Xt|Z1: t-1) is the prior Probability 

Density Function (PDF) at time t. At time t, the observation Zt is available, then the state can be updated using 

Bayes's rule as: 
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Where p(Zt|Xt) is described by the observation equation. The posterior PDF  p(Xt-1|Zt-1) is approximated 

recursively as a set of N weighted samples N
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Using a Monte Carlo approximation of the integral, we get: 

p (Xt|Zt) =p (Zt|Xt) 
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Then it is weighted by the likelihood. 
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 for the posterior PDF p (Xt|Z t) at time t.  
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1) Problem Formulation 
This particle filter estimates the robot’s planar position only, not orientation. So, each particle is a point in the 

state space (in this case the xy plane) and represents a particular solution. The primary reference for this filter is 

the paper on Condensation by Blake [15], 1998.In the following basic steps forming the particle filter for 

localization problem are investigated. 

  

2) Initialization: 

 We choose the number of particles to be N=1000, with each particle initialized to a random state 








y

X
, so the 

particles are initially evenly spread over the xy plan within set boundaries. The probability of the ith particle 

is









N

1
, and a cumulative probability distribution is maintained for the particles as well. The cumulative 

probability for the ith particle is









N

i
. 

3) Drift: 
 The drift is simply computed as the translation in x and y from the integrated dead reckoning path. The dead 

reckoning measurements are treated as a simple (x, y) translation since the particles are not oriented. So, at each 

time step the particles all drift by the same amount. 

 

4) Diffusion: 
After drifting, a random number is added to each particle’s coordinates. A diffusion rate of B=0.03 m/s is chosen, 

so the random diffusion amount is scaled by B*(Δt), where Δt is the amount of time since the last measurement. 
 

5) Sampling: 
A probability is assigned to each of the particles according to the standard Gaussian formula: 
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Where   rm is the range measurement   

             rˆ is the range estimate from the particle to the beacon,  

and σ is the standard deviation from the PDF for that range measurement. 

 

6) Resampling : 
The particles are resampled to represent their current probability distribution. This is done by the standard 

methods as  resampling approaches namely : Multinomial Resampling (Mult R), Systematic Resampling (SR), 

Residual Resampling (RR), Residual Systematic Resampling (RSR) and Stratified Resampling (STR) the particles 

which has a large weight generate a number of copies which are going to be propagated to the next generation 

proportional to its weight[16].  

III. IMPLEMENTATION AND RESULTS OF ROBOT LOCALIZATION ALGORITHM USING STUDIED 

FILTERS  

We studied a localization system which employs radio beacons that provide the ability to measure range 

only [17]. Obtaining range from radio beacons has the advantage that line of sight between the beacons and the 

transponder is not required, and the data association problem can be completely avoided. In this work seven radio 

beacons are distributed over two different areas robot is programmed to drive in a repeating path. All filters 

methods are used to fuse range data with dead reckoning data collected from a real system which integrates 

proprioceptive measurements from wheel encoders, gyros, and accelerometers to localize the robot. Matlab 

environment is used for experimenting with localization process.
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Fig .1: The ground truth path, tag locations and dead reckoning from left to right. (a) The first dataset (A1), (b) the 

second dataset (A2) 

Fig [1] shows the dead reckoning path, ground truth path and tag locations for the first path dataset [A1] in. 

We notice from these figures that the dead reckoning tends to drift away from the true path over time. This is due 

to increasing errors in odometry.  

A. The results of the different approaches  

In this paper we have presented two carefully-collected datasets and processed them with an extended Kalman 

filter, a particle filter, and Enhanced particle / Kalman filter. Our implementation of particle in matlab 

environment requires no initial estimate of the robot’s position.  In all experiments, the robot’s travel is clipped 

from results plot, giving the filter time to converge. Figs (2-4) show the results of studied filters. Table [1] & [2] 

summarizes the results of these figures concerning the error in the estimates of the studied filters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: particle filters localization performance on a) first dataset (A1) b) Second dataset (A2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: Kalman filter localization performance on a) first dataset (A1) b) Second dataset (A2). 
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Fig. 4: Enhanced EPKF localization performance on a) first dataset (A1) b) Second dataset (A2) at the connecting steps 

between the two filters. 

 

Table 1: Results of Error Calculation Using Different Filters in the first Dataset (A1) 

Error/in meter PF EKF PKF 

XTE_abs_avg 3.5883 0.8787 0.8841 

XTE_abs_max 23.4162 2.5697 2.5673 

XTE_abs_std 3.622 0.5946 0.5983 

ATE_abs_avg 5.3397 1.1241 1.1386 

ATE_abs_max 32.7119 3.5205 3.5204 

ATE_abs_std 5.0402 0.792 0.7908 

Cartesian_abs_avg 7.0857 1.5502 1.5697 

Cartesian_abs_max 33.3154 3.5315 3.5314 

Cartesian_abs_std 5.4501 0.7748 0.7662 

 

XTE:Cross Track Error, How far left or right of the true position our estimation is, Orthogonal to the true heading, 

ATE: Along Track Error, Tangential component of the position error ,Cartesian error: Total Euclidean distance 

error /in meter . 

Table 2: Results of Error Calculation Using Different Filters in the first Path Data (A2) 

Error/in meter PF  EKF PKF 

XTE_abs_avg 7.2004 0.6052 0.6119 

XTE_abs_max 36.9777 1.8401 1.7059 

 XTE_abs_std 7.3529 0.3987 0.3952 

ATE_abs_avg 8.768 0.5405 0.5368 

ATE_abs_max 37.3803 1.6589 1.7392 

 ATE_abs_std 8.3345 0.3644 0.3603 

Cartesian_abs_avg 12.5861 0.8862 0.8882 

Cartesian_abs_max 40.9376 1.8673 1.8283 

Cartesian_abs_std 9.6871 0.402 0.3996 

IV. DISCUSSION OF RESULTS  

The results are summarized graphically using bar chart in Fig [5-6]. Chiefly, we 

consider the cross-track error (abbreviated XTE), which gives the component of position 

error that is orthogonal to the robot’s path. We also present the along-track error 

(abbreviated ATE), which measures the tangential component of position error. 
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Fig. 5:  The EKF, the Enhanced EPKF and PF along-track error, the cross-track error and Cartesian error 
 

 

Fig.6: The EKF, the Enhanced EPKF and PF along-track error, the cross-track error and Cartesian error 
 

From Table [1] & [2] and fig 5-6 comparable results  we notice the slight difference in calculated error among 

extended Kalman filter and the proposed Enhanced particle / Kalman filter while the particle filter posses 

excessive error. 

Considering computational complexity and time consumed in a Matlab run, Fig [7] shows the time consumed 

by each filter in the same environmental Conditions. There is a slight increase in time for the propose EPKF 

compared with EKF while the PF consumes higher time. Therefore, the proposed filter achieves the same results 

of EKF while keeping the computational cost reasonable and via the time solving the problem inherent of all 

Kalman filters which require a defined initial state.  
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Table.3 Summarizes the Average Time each Algorithm Requires to Incorporate an Incoming Range Measurement into the 

Robot Position Estimate 

Running Times seconds per measurement update 

Particle Filter 0.142494 

EKF 0.007988 

EPKF: PF estimate an initial state which to seed the EKF. 0.014385 

 

Fig.7:  Comparing the time required to update the robot pose estimate after a range measurement is taken. 

CONCLUSION 

This paper presents a study for the effect of several filters in the behavior of robot localizer using 
radio beacons that provide the ability to measure range only. Different filters namely Kalman filter 

(KF), Particle Filter (PF) and a proposed enhanced particle/Kalman (EPKF) implemented in Matlab environment 

and their behavior are evaluated. The enhanced particle/ Kalman (EPKF) provide the required initial location   

while there is no significant change in the error in compared to Kalman filter (EKF) and computational cost. 

 

Several approaches are reported to overcome the divergence of KF in case of (strong 

maneuvering and bad initial start. In this paper we purposed using PF as Initialization 

phase to coarsely predict the initial location.  
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